Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
نویسندگان
چکیده
Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires e cient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser–matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters a ecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving e ciency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver.
منابع مشابه
Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملترابرد نوترون، الکترون و فوتون در ساچمههای ICF در حالت اشتعال جرقهای و اشتعال سریع
Fusion energy due to inertial confinement has progressed in the last few decades. In order to increase energy efficiency in this method various designs have been presented. The standard scheme for direct ignition and fast ignition fuel targets are considered. Neutrons, electrons and photons transport in targets containing different combinations of Li and Be are calculated in both direct and fas...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملEnergy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion
Energy deposition of MeV electrons in dense plasmas, critical for fast ignition in inertial confinement fusion (ICF), is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while “anomalous” stopping associated with self-generated fields and micro...
متن کاملبررسی بهره همجوشی اشتعال سریع با هدفهای مخروطی
Fast ignition is a new scheme for inertial confinement fusion (ICF). In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T) fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015